Showing posts with label rate of change. Show all posts
Showing posts with label rate of change. Show all posts

Monday, 20 June 2016

Developing Derivatives Graphically

In this activity students develop the visual connection between a quadratic function and its derivative. Each student is given a quadratic function and an x value. They are to determine the point and the instantaneous rate of change of their function at that x value. Once they do this they plot their point and then also plot their rate of change (as a point at that x value) on a piece of chart paper. Since everyone is given a different x value, a graph of both the original function and its derivative should be constructed. This would be a good activity to introduce the concept of the derivative shortly after students know how to find the instantaneous rate of change by using a limit.
Once students are done the graphs on the charts, they can then move to extend their thinking with this Desmos activity where they visually estimate the slope of the tangent to eventually build the derivative (based on a original sketch by @eluberoff). As they slide the sliders to estimate each tangent, once they get them all close to where they should be, the derivative appears (see animated gif below)They do this for several simple quadratic functions and (hopefully) see the beginnings of how the power rule works as they move towards simple cubic functions.


  • MCV4U-A2.2 - generate, through investigation using technology, a table of values showing the instantaneous rate of change of a polynomial function, f(x), for various values of x (e.g., construct a tangent to the function, measure its slope, and create a slider or animation to move the point of tangency), graph the ordered pairs, recognize that the graph represents a function called the derivative, f ’(x) or dy/dx , and make connections between the graphs of f(x) and f ’(x) or y and dy/dx
  • A3.1 - verify the power rule for functions of the form f(x) = xn , where n is a natural number
  • Grid chart paper (one per function - write a different function on the top of each piece). You may wish to draw the grid on each piece before hand. Because the scale can get disproportionally large on the y vs x axis you may want to spread the scale out on the x so that it's not so crowded. Note that if you choose to us a disproportionate scale on the chart paper then the kids must use a similar scale in their mini graph papers ( I've done this activity a few times and only now, as we created this post, did we figure out that this is why the slopes of the tangents didn't quite match the graphs physically). 
  • Copies of each mini graph for each student via the handout (see image to the right for a sample). There are four functions (f(x) = 1/4x2, f(x) = 1/2x2, f(x) = x2, and f(x) = 2x2) and potentially nine x values for each function (-4, -3, ....3, 4). You may not want to give out the -4 or 4 for the f(x) = 2x2 function as it requires a big y axis scale. Depending on how big your class is, you may not want to hand out all of the mini graph sheets. For example, if you had 25 students you might want to use 3 of the functions. Cut these out ahead of time. You may wish to have more than you need ready so that if someone finished quickly, they can be given another one. 
  • Scotch tape for students to stick their graphs on the chart paper.
  • Markers. Preferably different colours (one colour for the function points, derivative points, function line, derivative line and tangent lines).
  • Laptops, Chromebooks, iPads if you will be extending this to the Desmos version
  • Place chart paper on the walls and distribute one mini graph to each student. Make sure there is enough of each function so that the shape will be visible
  • Each student then does the following:
  1. Determine the point on that function at that x value: A(     ,      )
  2. Determine the slope of the tangent at that x value for your function: Slope of tangent = _____
  3. On your mini graph, draw a line with the same slope as the slope you just calculated and going through the middle point on the mini graph
  4. Plot the point from #1 on the large graph. Stick your mini graph on the large graph paper so the point on the mini graph paper is on top of the point you just plotted (be careful with your orientation)
  5. Plot a second point that has your x value and its y value is the slope of your tangent: B(   ,   )
  • As students plot their points by sticking their mini graphs on the chart paper, you may wish to use the markers to draw over their points and lines to make them more visible. Note: If a student makes a mistake, do not correct it right away (or make it permanent with a marker). Instead ask students if they think anything is out of place either at the time or during the consolidation
  • Once all the graphs are done consolidate the ideas
  • Once consolidated then move to the Desmos activity. If you have not done a Desmos activity before you might like to watch some of these tutorials first: Navigating, starting an activity, and teacher dashboard.
  • Note that it is not necessary for students to get all the way through the activity. As long as they get through the quadratics. The cubical are the extension. The whole idea behind this is they discover the power rule.
Did you use this activity? Do you have a way to make it better? If so tell us in the comment section. Thanks

Monday, 4 April 2016

Rate of Change Continuum

A continuum is something where the level difficulty increases in incremental steps. In this case the continuum is dealing with calculating the rate of change (slope) of a linear relationship.
We have previously posted a continuum for solving equations here and here but this one is a bit different. This one has five levels of determining the rate of change from a graph (in context) for a linear relationship. The first level shows lattice points, a rate triangle and the calculation of both rise and run (super basic) and the difficulty increases with each level (see below) until the last level where there is only a scale with no grid lines (so the answer is more of an estimate).

Each page has 6 graphs and students (once they choose the level to start with) choose to answer any three. If they do so correctly then they can move to the next level. The To make things a bit more fun, rather than check the answers with you, we suggest using a UV pen and ink written on the question cards for students to check.
This activity is probably best meant as a consolidation. Note that the expectation is about investigating so hopefully students will have had a chance to develop their own strategies for determining the rate of change. This activity just helps to scaffold it a bit in case they are having trouble (Eg a common mistake that students make when determining the rate of change when the line is in context is to just count boxes for the rise and run without considering the scale).
Note that we also have an Explain Everything version if you have students who have iPads (you may even want to try out the new Explain Everything Collaborative Whiteboard app to have students work in groups from different devices).

  • MPM1D, MFM1P - determine, through investigation, connections among the representations of a constant rate of change of a linear relation.
  • 20 copies of each of the question cards in different colour cardstock for each level,  laminated (use colours that allow seeing the magic pen writing). Note that you may not need 20 copies of each. Perhaps fewer of the first couple levels and last level as most kids will probably be starting in the 2nd or 3rd level
  • 3 sets of the answer cards (use magic pen to write the answers anywhere along each equation, they could be sideways, upside-down, (the answers are on the last page of the Google Doc). To help distinguish the answer cards to the question cards you should put a stamp or sticker on the back.
  • 3 "magic" pens can be purchased at Chapters/Indigo or we found these at a Scholastic's book fair. We have since purchased some on eBay.

  1. For this activity to be successful, students must start at the appropriate envelope. If they start in one that is too hard they will be frustrated and if they start in one that is too easy they will be bored. Use an exit card (the day before) to help you decide which envelope each student should start in. When given back the exit card write down the level they will start in. 
  2. Place the questions in piles in order of difficulty and set up three stations for the answer cards. Students will get a card and answer any 3 questions. 
  3. To check their answers, they will go to a station and use the magic pens. Students may decide to do one question at a time and then go check their answer or they may do all 3 and then check. Students are monitoring themselves so they decide. If they get the first 3 right, they have a level of mastery to move themselves to the next level. If not there are more questions on the card until they master that type. 
  4. As they move through the continuum, the hope is that they reach level 4 which matches the grade 9 curriculum. Since our goal is to get them to level 4, students should solve ALL equations on that card instead of just three. 
  5. The fifth level is set up to challenge students who are moving forward quickly. They should solve all questions on this card. They require some estimation and so answers that students get should be approximate. 
Note that for the Explain Everything version, there are still 6 possible graphs for each level but only two on each page. And to check the answer, slide the black ellipse to either the bottom left or right corner. 
Did you use this activity? Do you have a way to make it better? If so tell us in the comment section. Thanks

Friday, 16 October 2015

Geometer's Sketchpad - Combining Velocity Vectors

When using the Geometer's Sketchpad it is often better to "start from sketch, not from scratch". That is, give students a premade sketch rather having them build something from nothing (as many textbooks would have you do).
In this activity, students will walk through a demonstration of how the combination of two linear motions can create a complex two dimensional motion (in this case circular motion). Some things that I think are important here are the fact that the two motions are completely independent of each other and the idea of how the look of a velocity vector changes as you speed up and slow down. The sketch is meant for students to walk through and answer questions as they go. You could also use it in the calculus part of the course to talk about velocity increasing/decreasing and what that looks like for motion.


  • A1.1 - describe examples of real-world applications of rates of change, represented in a variety of ways (e.g., in words, numerically, graphically, algebraically)
  • C1.2 - represent a vector in two-space geometrically as a directed line segment, with direction expressed in different ways (e.g., 320º; N 40º W), and algebraically (e.g., using Cartesian coordinates; using polar coordinates), and recognize vectors with the same magnitude and direction but different positions as equal vectors
  • C2.1 - perform the operations of addition, subtraction, and scalar multiplication on vectors represented as directed line segments in two space, and on vectors represented in Cartesian form in two-space and three-space
  • All that is needed is the electronic download (below)
  • Note that this really works well on an iPad using the Sketchpad Explorer App (which is free)
  • You can also use this on any web based computer (or Chromebook) with this Web sketch
Watch the video below to see how to use the sketch

Did you use this activity? Do you have a way to make it better? If so tell us in the comment section. Thanks